Al-Farabi Kazakh National University Faculty of Physics and Technology Chair of Theoretical and Nuclear Physics

APPROVED Dean of the Faculty _____ Davletov A.E. "____ " ___ 20 17.

Syllabus autumn semester, 2017-2018 academic year

Academic course information

Discipline's	Discipline's title	Туре	No. of hours per week			Number of	ECTS
code			Lect.	Pract.	Lab.	credits	
5303 VTS	Introduction to	Basic	2	1	0	3	5
	the theory of						
	supersymmetry						
Lecturer	Takibayev N.Zh	., d.s.pr	n., acaden	nic Office	hours	Schee	duled
	of NAS RK, professor						
e-mail	E-mail: <u>takibayev@gmail.com</u>						
Telephone	Telephone: 29	25-133;	8-777-70	4- Audito	ry	319	
number	0396						

Academic	Type of course (theoretical, practical; basic, elective) and its purpose (role and			
presentation of	place of the course in the educational program): Theoretical Nuclear Physics.			
the course	The aim of the course: to give the students the deep understanding of the			
	modern physics of nucleus of atoms and quantum mechanics of many-particle			
	systems and self study, to form a system of competences in the context of			
	qualification requirements: *			
	A) cognitive: be able to - demonstrate acquired knowledge (specifically) and it's			
	understanding; - demonstrate an understanding of the overall structure of the study field and the relations between its elements (specifically):			
	B) functional: be able to - include new knowledge in the context of basic			
	knowledge, interpret its contents; - analyze educational situation and offer			
	direction to solve it; - use methods (research, calculation, analysis, etc.) inherent			
	to the field of study (specifically) individually or in a group teaching and			
	research activities; **			
	C) systemic: be able to - synthesize, interpret and evaluate the learning outcomes			
	of discipline, modules, midterm exam content (specifically); make an analysis of			
	D) Social: be able to - constructive educational and social interaction and			
	cooperation in the group; - propose to consider a problem, to reason its			
	importance; - accept criticism and to criticize; - work in a team;			
	E) metacompetences: be able to - recognize the role of taken course in the			
	implementation of individual learning paths. * The system of descriptor verbs			
	must be used during the formation of competences (Look in Application 2) **			
	Active and interactive methods is recommended to ensure deeper understanding			

	and learning of educational material and to achieve learning outcomes of the course (individual researches, group projects, case studies and other methods).			
Prerequisites	Mathematical analysis, the theory of functions of complex variables, differential			
1	equations mathematical physics statistical physics physics of elementary			
	particles			
Post requisites	Actual problems of physics and ecology trends in the development of			
1 obt requisites	technology and environmental problems Problems of energy and			
	nanotechnologies Modern problems of space ecology and physics			
Information	Literature:			
racourace	1 M Kalay Introduction to superstrings and M. Theory Springer 624 (1000)			
resources	1. IVI. KAKU: Introduction to superstrings and M- Theory, Springer, 624 (1999).			
	2. J. wess, J. Bagger. Supersymmetry and Supergravity, Princeton University Dress (1002)			
	Press (1992).			
	253(1982).			
	4 S.P. Martin, "A supersymmetry primer" ArXiv:hep-ph/9709356			
	5 <i>ID Lykken</i> "Introduction to supersymmetry" ArXiv:hep-th/9612114			
	6 A Bilal "Introduction to Supersymmetry" ArXiv:hep-th/0101055			
	7 D L Kazakov «Supersymmetric expansion of the Standard model of			
	fundamental interactions» the works of the summer school of the «Dynasty»			
	foundation «Physics of fundamental interactions» (2006).			
	8 M Shifman A Vainshtein "Instantons Versus Supersummetry: Fifteen years			
	later "ArXiv hen-th/9902018			
	Internet_resources:			
	1 Krasnikov NV Matueev V A hep_ph/0703204			
	1. KLASHIKOV IN V, MARVEEV V A HEP-pH/9/05204 2. V A Colfand E D Likhtman IETD L att 12 452 (1071)			
	2. I.A. GOIJUIU, E.F. LIKUIIIUII, JEIF Lett. 13 432 (1971) 2. Volkov D.V. Akulov V.D. Dhys. Lett. P 46 100 (1072)			
	5. VOIKOV D V, AKUIOV V F Flys. Lell. D 40 109 (1975) 4. Woos I. Zumino P. Nucl. Phys. P 70 20(1074)			
Acadamia	4. Wess J, Zummo D Waci. Phys. D 70 39(1974)			
Academic rolicy of the	Academic Deliavior Kules:			
policy of the	Without advance notice of absence and undue tardiness to the teacher is			
course in the	without advance notice of absence and undue tardiness to the teacher is			
context of	estimated at 0 points.			
university	Academic values:			
moral and	Inadmissibility of plagiarism, forgery, cheating at all stages of the knowledge			
ethical values	control, and disrespectful attitude towards teachers. (The code of KazNU			
	Student's honor)			
Evaluation and	Criteria-based evaluation:			
attestation	Assessment of learning outcomes in correlation with descriptors (verification of			
policy	competence formation during midterm control and examinations).			
	Summative evaluation:			
	evaluation of the presence and activity of the work in the classroom; assessment			
	of the assignment, independent work of students, (project / case study / program			
	/)			

Calendar (schedule) the implementation of the course content:

Wee	Topic title (lectures, practical classes, Independent work of	Numbe	Maximum score	
ks	students)	r of		
		hours		
Module 1				

1	Lecture-1 (L-1). Continuous integrals and point particles.	2	-		
	Seminar -1 (S-1). Relativistic point particles.	1	8		
2	L-2. Secondary quantization. Harmonic oscillators.	2	-		
	S-2. Currents and secondary quantization.	1	8		
3	L-3. The strings of Nambu-Goto.	2	-		
	S-3. Boson strings.	1	8		
	SSW-3. Quantization in the calibration of a light cone.	1	8		
4	L-4. Two-dimensional supersymmetry.	2	-		
	S-4. Closed strings.	1	8		
	SSW-4. Destruction of spirits.	1	8		
	Module 2				
5	L-5. Supersymmetry	2	-		
	S-5. Supersymmetric point particles.	1	8		
	SSW-5. Quantization.	1	8		
6	L6. Two-dimensional supersymmetry. Trees.	2	-		
	S6. Local two-dimensional supersymmetry.	1	8		
	SSW-6. Superstrings.	1	8		
7	L7. Conformal field theory and the Kac-Moody algebra.	2	-		
	S7. Conformal field theory.	1	8		
	SSW-7. Superconformal field theory.	1	12		
	1st Intermediate Control (IC1)		100		
8	Midterm (MT)		100		
	L-8. Fermion vertex operator. Spinors and trees.	2	-		
	S-8. The Kac-Moody algebras.	1	8		
	SSW-8. Supersymmetry.	1	6		
Module 3					
9	L-9. Multi-loop amplitudes and Teichmüller spaces.	2	-		
	S-9. Unitarity. One-loop amplitudes.	1	8		
	SSW-9. Harmonic oscillators.	1	6		
10	L-10. Field theory in the calibration of the light cone.	2	-		
	S-10. Вывод полевой теории точечных частиц.	1	6		
	SSW-10. Field theory of superstrings.	1	6		
11	L-11. Field theory of BRST.	2	-		
1					

	SSW-11. Closed strings and superstrings.	1	6
12	L-12. Geometric field string theory.	2	-
	S-12 String group.	1	6
	SSW-12. Geometrical output of the action.	1	6
13	L-13. Anomalies and the Atiyah-Singer theorem.	2	-
	S-13. Anomalies and Feynman diagrams.	1	6
	SSW-13. Reduction of anomalies in string theory.	1	6
14	L-14. Heterotic strings and compactification.	2	-
	S-14. Spectrum of states. Covariant and fermion	1	6
	formulations.		
	SSW-14. A ten-dimensional theory without supersymmetry	1	6
15	L-15. On the theory of supersymmetry.	2	-
	S-15. Four-dimensional superstrings.	1	6
	SSW-15. Review of the theory of supersymmetry.	1	6
	2nd Intermediate Control (IC2)		100
	Exam		100
Independent work of students with teacher is 7 hours for semester. 3, 5, 7, 9, 11, 13 and 15			
weeks are included into syllabus (assignment submission)			

Lecturer_____ Takibayev N.Zh. Head of the Department_____ Abishev M.E. Chairman of the Faculty Methodical Bureau_____ A.T.Gabdullin